INTERNAL vs. EXTERNAL DIASTEREOTOPISM IN HOMOCHIRAL CIS vs. TRANS

OLEFIN METAL π COMPLEXES *

V. Schurig

Institut für Organische Chemie der Universität

74 Tübingen, Auf der Morgenstelle 18, Germany

(Received in UK 22 August 1977; accepted for publication 22 September 1977)

Metal- π -complexation on the homotopic faces of achiral <u>cis</u> olefins possessing pairwise homotopic groups (C_{2v}), e.g. dimethylmaleate (<u>1</u>), leads to a configuration (C_s) with pairwise internally enantiotopic ¹ groups. As has been shown ² for dimethylmaleate tetracarbonyliron (<u>3</u>), the vinyl and methyl protons become <u>internally</u> diastereotopic ¹ in a chiral environment permitting ³J_{cis} of the vinyl protons (AB system) to be determined by ¹H-NMR.

Metal- π -complexation on the enantiotopic faces of prochiral <u>trans</u> olefins possessing pairwise homotopic groups (C_{2h}), e.g. dimethylfumarate (<u>2</u>), leads to enantiomers (C_2)³ with pairwise internally homotopic but externally enantiotopic groups. As has been shown² for dimethylfumarate tetracarbonyliron (<u>4</u>), the vinyl and methyl protons become <u>externally</u> diastereotopic in a chiral environment permitting enantiomeric compositions to be determined by ¹H-NMR.

No auxiliary chiral probe is required to observe internal and external diastereotopism if the olefin metal π complex possesses elements of inherent chirality. Thus, proton chemical shift nonequivalence has been detected ⁴ in π complexes of (<u>1</u>) and (<u>2</u>), respectively, in which the metal atom constitutes an asymmetric center.

We now report on an alternative case where <u>cis</u> and <u>trans</u> olefins, carrying two chiral groups of equivalent constitution and configuration, e.g. homochiral ⁵ di-<u>1</u>-menthylmaleate (5) ⁷ and di-<u>1</u>-menthylfumarate (6) ⁷, are coordinated to an achiral metal atom. This situation is realized for di-<u>1</u>-menthylmaleate tetra-carbonyliron (7) and di-<u>1</u>-menthylfumarate tetracarbonyliron (8).

^{*} In part presented at the Chemical Society 1976 Autumn Meeting, Sheffield.

In homochiral (5) (C_2 axis in the molecular plane) the vinyl protons and the olefinic faces are homotopic. After metal π complexation one single diastereoisomer (C_1) (7) is formed in which the vinyl protons are <u>internally</u> diastereotopic. In homochiral (6) (C_2 axis perpendicular to the molecular plane) the vinyl protons are homotopic but the olefinic faces are diastereotopic. After metal π complexation two diastereoisomers (C_2) (8) are formed in each of which the vinyl protons are internally homotopic but <u>externally</u> diastereotopic^{8,9}.

We provide chemical and NMR spectroscopic evidence for the stereochemical relationships discussed hitherto.

Homochiral ($\underline{\gamma}$) has been obtained ¹¹ as a single diastereoisomer. The occurrence of <u>internal</u> diastereotopism is evident from the ¹H-NMR spectrum of ($\underline{\gamma}$) (FIG.1) exhibiting an AB quartet for the vinyl protons from which the coupling constant ³J_{cis} can be calculated (see TABLE).

<u>TABLE</u>. ³J_{cis} coupling constants of olefin tetracarbonyliron π complexes

π complex	Methylacrylate• Fe(CO) ₄	Dimethylmaleate. Fe(CO) ₄ (<u>3</u>)	$\frac{\text{Di-1-menthy1maleate}}{\text{Fe(CO)}_4} (\underline{7})$
³ J _{cis} (Hz)	10.2 12	9.4 2	9.67

Internally diastereotopic groups in homochiral configurations have been observed only in a few instances 10,13 . It should be noted that inherent to symmetry properties, in tetrahedral assemblies A b b cc, the geminal groups c are internally diastereotopic in heterochiral (${}^{B}_{b}{}^{B}_{b}$) configurations and homotopic in homochiral (${}^{B}_{b}{}^{B}_{b}$, ${}^{S}_{b}{}^{S}_{b}$) isomers 14 .

Homochiral $(\underline{8})$ occurs in two diastereoisomeric forms. Pure $(+)-(\underline{8}a)$ has been obtained ¹¹ by fractional crystallization from n-hexane $(22^{\circ}C)$ and pure (-)- $(\underline{8}b)$ has been isolated from the concentrated mother liquor. Complete resolution of $(\underline{8})$ and occurrence of <u>external</u> diastereotopism is evident from the ¹H-NMR spectra of $(\underline{8}a)$ and $(\underline{8}b)$ (FIG. 2) showing different resonance absorptions for the vinyl and part of the methyl protons, whereby the protons of $(\underline{8}a)$ are less shielded. Determination of the diastereoisomeric composition of crude $(\underline{8})$ by ¹H-NMR (FIG. 1) reveals asymmetric induction, i.e. preferential metal π complexation on one diastereotopic face of $(\underline{6})$, slightly favouring formation of $(\underline{8}a)$ under the reaction conditions employed ¹¹.

The results establish that homochiral (or heterochiral) configurations and <u>cis/trans</u> isomerism in olefin metal π complexes ¹⁵ may be distinguished by NMR chemical shift nonequivalence criteria. Homo- or heterochiral derivatization may be used to create internal diastereotopism and thereby to obtain NMR coupling constants for vicinal nuclei.

FIG. 1: 90 MHz ¹H-NMR spectra (CDCl₃, 25^oC) of (7) (internal diastereotopism) $v_{\rm H}$: 3.45 and 3.36 ppm, ³J_{cis}: 9.67 Hz; $v_{\rm CH_3}$: 0.75, 0.83, 0.87, 0.89, 0.94, 0.97 ppm and of (8) (external diastereotopism) mixture of diastereoisomers, resonances cf. Fig. 2.

<u>FIG. 2</u>: 90 MHz ¹H-NMR spectra (CDCl₃, 25^oC) of resolved diastereoisomers (<u>8</u>a): $v_{\rm H}$: 3.78 ppm; $v_{\rm CH}$: 0.74, 0.82, 0.89, 0.94⁵, 0.97 ppm and (<u>8</u>b): $v_{\rm H}$: 3.67 ppm; $v_{\rm CH}^3$: 0.72, 0.80, 0.89, 0.93⁵, 0.97 ppm.

ACKNOWLEDGEMENT

The author is indebted to Professor Kurt Mislow, Princeton, for most helpful suggestions and highly stimulating discussions.

REFERENCES AND NOTES

- 1 K.Mislow and M.Raban, Top.Stereochem., 1, 1 (1967)
- 2 V.Schurig, Tetrahedr.Letts., <u>1976</u>, 1269 and Chem.Ztg., <u>101</u>, 173 (1977)
- 3 G.Paiaro, Organometal.Chem.Rev., Sect. A, 1970, 319 and ref. therein
- H.Alt, M.Herberhold, C.G.Kreiter and H.Strack, J.Organometal.Chem., <u>102</u>,
 491 (1975), M.-A.Haga, H.Yukawa and T.Tanaka, ibid., <u>128</u>, 265 (1977)
- 5 We adopt the terminology ⁶ 'homochiral' (RR or SS) for <u>racemic</u> (d1) stereoisomers and 'heterochiral' (RS, SR) for <u>meso</u> stereoisomers
- 6 Lord Kelvin, in "Baltimore Lectures", C.J.Clay and Sons, London, <u>1904</u>, p 619
- 7 A.Wassermann, Annalen, <u>488</u>, 211 (1931)
- 8 In heterochiral assemblies the relation between internal and external diastereotopism to <u>cis/trans</u> isomerism is reversed: In heterochiral (5) (σ plane perpendicular to the molecular plane (C_s)) the vinyl protons are enantiotopic but the olefinic faces are diastereotopic. After metal π complexation two achiral diastereoisomers (C_s) are formed (containing a pseudoasymmetric plane ¹⁰) in each of which the vinyl protons are internally enantiotopic but <u>externally</u> diastereotopic. In heterochiral (6) (molecular center of symmetry (C_i)) the vinyl protons and the olefinic faces are enantiotopic. After metal π complexation enantiomers (C_1) are formed in each of which the vinyl protons are <u>internally</u> diastereotopic.
- 9 The stereochemical analysis presupposes rapid internal rotations on the NMR time scale
- 10 S.I.Goldberg and W.D.Bailey, J.Amer.Chem.Soc., <u>93</u>, 1046 (1971) and ibid., <u>96</u>, 6381 (1974), C.Moïse and Y.Mugnier, Tetrahedr.Letts., <u>1972</u>, 1845
- 11 Acc. to the general proc. of ref. 12. Calcd % C: 60.00 H: 7.19 Fe: 9.96 (7): Found % C: 60.06 H: 7.22 Fe: 9.98; m.p.: 108° C (yellow needles) [α]²⁰ (<u>c</u> 0.25, CHCl₃): -118° (D) -124° (578) -143° (546) -274° (436). (<u>8</u>a): Found % C: 60.03 H: 7.11 Fe: 9.90; m.p.: 152° C (dec)(yellow cryst.) [α]²⁰ (<u>c</u> 0.25, CHCl₃): $+306^{\circ}$ (D) $+324^{\circ}$ (578) $+380^{\circ}$ (546) $+650^{\circ}$ (436). (<u>8</u>b): Found % C: 60.00 H: 7.15 Fe: 9.80; m.p.: 162° C (dec)(yellow needles) [α]²⁰ (<u>c</u> 0.25, CHCl₃): -350° (D) -367° (578) -426° (546) -710° (436).
- 12 E.Weiss, K.Stark, J.E.Lancaster and H.D.Murdoch, Helv.Chim.Acta, <u>46</u>, 288 (1963)
- 13 R.K.Hill and T.-H.Chan, Tetrahedr., 21, 2015 (1965)
- 14 W.B.Jennings, Chem.Rev., 75, 307 (1975) ref. 11-20
- 15 This statement should be valid also for epoxides, aziridines and related carbo- or heterocyclic compounds